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Abstract
This paper shows that there should be a second-order phase transition at the
temperature T ∗ at which a gap opens in superconductors, and points out the
best way to verify this prediction, and that the phase transition might have been
discovered more than ten years ago.

1. Introduction

Bardeen, Cooper, and Schrieffer showed that the gap equation for superconductors is [1]

1 =
∑

k

V

2
√
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where −V represents the purely attractive potential between two electrons,	′(T ) the gap. Just
by applying the zero-gap condition to equation (1), Bardeen, Cooper, and Schrieffer obtained
a formula for determining the superconducting transition temperature Tc, which is [1]

Tc = 1.14h̄ωDe1/(N(0)V ) (2)

where ωD is the Debye frequency. Bardeen, Cooper, and Schrieffer showed that the transition
at Tc is a second-order phase transition, and that the electronic specific heat jump at Tc is [1]

Ces(T )− Cen(T )

Cen(T )

∣∣∣∣
T=Tc

= 1.43. (3)

Ces and Cen are the electronic specific heats in the superconducting and normal states,
respectively.

This paper shows, in section 2, that when one just applies the zero-gap condition to
equation (1) the temperature obtained is actually T ∗ rather than Tc, the phase transition at T ∗ is
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a second-order phase transition, and the specific heat jump in equation (3) occurs at T ∗ rather
than Tc. In section 3 we point out the best way to find the second-order phase transition at
T ∗. In section 4 we point out that the second-order phase transition at T ∗ might have been
discovered more than ten years ago.

2. The second-order phase transition at T ∗

As is well known, superconductivity at Tc requires long-range phase coherence between
Cooper-bound pairs. However, the zero-gap condition in BCS theory does not include the
condition for long-range phase coherence. Doniach and Inui showed that for superconductivity
at Tc, the Ginzburg–Landau phase-stiffness parameter Jstiffness should satisfy [2]

Jstiffness(T ) � 2e2

ε∞a0(T )
(4)

where ε∞ is the high-frequency dielectric constant, e the charge of a free electron, a0(T ) the
mean pair spacing at T . If condition (4) is satisfied, then the system has long-range phase
coherence, i.e. remains a superconductor. The formula for Jstiffness is [2]

Jstiffness(T ) = |�(T )|2 lim
q→0

1

a2
0(T )

∂

∂q2
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where
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where q is the wavenumber, Ek =
√
(ξk)2 + (	(k, 0))2, ξk = ε(k) − EF , 	(k, T ) =

	(T )G(k), 	(k, 0) is the gap at 0 K, and �(T ) is the order parameter. We assume that
the maximum value of G(k) is one. The formula for determining Tc is thus

|�(Tc)|2 lim
q→0

1

a2
0(Tc)

∂

∂q2
[L(q)]−1 = 2e2

ε∞a0(Tc)
. (7)

Generally, Tc determined from equation (7) is not equal to T ∗ determined by applying the
zero-gap condition to equation (1).

Now let us discuss the thermodynamic functions at Tc < T � T ∗. When Tc < T � T ∗,
the system is in a pair state with a gap and without long-range phase coherence. Let Fpair, Spair,
and Cpair represent the free energy, entropy, and specific heat of a pair state, respectively. Let
FN , SN , and CN represent the free energy, entropy, and specific heat of a normal state without
a pair and long-range phase coherence, respectively. Using the same procedures as in section
36 of reference [3], we obtain for T ≈ T ∗

Fpair − FN = −2mpF (T ∗)2

7ζ(3)

(
1 − T

T ∗

)2

(8)

Spair − SN = −4mpFT ∗

7ζ(3)

(
1 − T

T ∗

)
. (9)

At T = T ∗ the differences in free energy and entropy of the two phases, i.e. the pair and
the normal states, are continuous. However, the specific heat at T ∗ is not continuous. From
equation (9) we obtain that the specific heat jump is

Cpair(T )− CN(T )

CN(T )

∣∣∣∣
T=T ∗

= 1.43. (10)
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Therefore, the phase transition from the normal state to the pair state is a second-order phase
transition. In our theory the second-order phase transitions at T ∗ and Tc relate to the appearance
of the gap and the phase coherence, respectively.

For many conventional superconductors the mean free path of electrons in the normal
state falls below the distance ξ0 (≈10−4 cm), known as the BCS coherence length. Thus, the
mean pair spacing a0 is nearly zero. Noting that Jstiffness is proportional to 1/a2

0 , one sees that
the inequality of equation (4) is easily satisfied. In this case, Tc is only slightly smaller than
T ∗ or approaches T ∗ infinitely closely. One cannot clearly distinguish the second-order phase
transition at T ∗ from that at Tc for conventional superconductors.

In our picture, the disappearance of superconductivity above Tc does not involve Cooper-
pair breaking as it would for conventional superconductors where the BCS coherence length
is generally longer than the mean free path of the carriers, but is instead associated with the
loss of long-range phase coherence as the Coulomb energy suppressing charge fluctuations
overcomes the tendency to long-range phase coherence maintained by the Ginzburg–Landau
phase-stiffness parameter.

3. The way to find the second-order phase transition at T ∗

We will deal with equation (7) analytically and numerically, and show that for the high-Tc
cuprates, T ∗ > Tc. Equation (6) can be simplified by making the following two approx-
imations: adopting the effective-mass approximation for ε(k); and using 	(0)/2 as the mean
value of 	(k, 0). Hence for the CuO2 plane,

lim
q→0

∂

∂q2
[L(q)]−1 = 4πk2

F

9(m∗)3(	(0)/2)2(aCu)2
(11)

where m∗ is the effective mass of the Opσ hole, aCu the nearest-neighbour distance between
two Cu2+ ions, and

a2
0(Tc) = 2a2

Cu

x|�(Tc)|2 (12)

where x is the number of Opσ holes in the CuO2 plane. |�(T )| was given by reference [3]:
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√√√√πT	2(T )

+∞∑
n=−∞

1
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Substituting equations (11) and (12) into equation (7) yields for the CuO2 plane

|�(Tc)|3 = 	(0)2

√
xk2

F

9
√

2a3
Cue

2(m∗)3

8πε∞
. (14)

Equation (14) is a general theoretical formula for Tc versus x. To obtain the values of Tc from
equations (14) and (13), the gap	(T ) would have to be known first. For two high-Tc cuprates
(Bi2212 and Y123), reference [4] gave the curves for 	(T ) versus x and T ∗ versus x (these
were shown in figures 1 and 2 of reference [4]). Substituting the known 	(T ) from reference
[4] into equations [14] and [13], we can obtain the curve for Tc versus x, which is shown in
figure 1 of this paper. Figure 1 demonstrates clearly that T ∗ > Tc. The gap at Tc < T < T ∗

is often called the pseudogap [5]. However, references [4, 6] and this paper show that all of
the gaps in the regions Tc < T < T ∗ and T < Tc relate to the same Cooper-bound pairs. The
only difference between the states in the regions Tc < T < T ∗ and T < Tc is that there is
not long-range phase coherence between Cooper-bound pairs for the former, while there is for
the latter.
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Figure 1. The phase diagram. The solid line is our theoretical curve for Tc versus x. Here x is
the hole number in one unit cell in the CuO2 plane. The solid circles are given by the formula
Tc = 93[1 − 82.6(x − 0.16)2] [9]. The dashed line is from reference [4]. The dotted–dashed line
is from reference [10]. The state in range 1 is superconducting. The states in ranges 2, 3, and 4 are
normal with a gap, antiferromagnetically insulating [10], and normal without a gap, respectively.

Making electronic specific heat measurements is very difficult since, at high temperature
where T ∗ can be found, the specific heats of typical high-Tc superconductors are dominated
by phonons [5]. Reference [6] pointed out that for the n-type cuprate Nd2−xCexCuO4 with
x = 0.12, T ∗ = 43 K and Tc = 0 K. We feel that Nd2−xCexCuO4 is the best candidate for
verifying the specific heat jump at T ∗.

4. Possible existing verifications for the specific heat jump at T ∗

Up to now, it has been thought that it was the case that the specific heat jump given by
equation (10) takes place just at Tc, with no specific heat jump, related to the Cooper-bound-
pair formulation, at T > Tc. So, even when people discovered the specific heat jump at
T > Tc, they always attributed it to some cause other than that related to the Cooper-bound-
pair formulation, or just simply neglected it.

Inderhees et al said that they found a specific heat jump at 89 K for their overdoped
Tc = 89 K Y123 sample [7]. However, we notice that in their data for specific heat versus
temperature there is clearly another specific heat jump at 93 K. Figure 1 indicates that if
Tc = 89 K, then T ∗ = 95 K. Considering the errors in experiment and theory, our theory
suggests that the jump observed at 93 K in reference [7] is the jump at T ∗.

Dunlap et al found a specific heat jump at 31 K for their underdoped Tc = 31 K LSCO
sample [8]. Dunlap et al also noticed that there is a phase transition at ≈80 K, which is not
transformed in a single heating cycle. Figure 2 of reference [6] indicates that if Tc = 31 K for
LSCO, then T ∗ = 83 K. Considering the errors in experiment and theory, our theory suggests
that the observed jump at ≈80 K in reference [7] is the jump at T ∗.
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